

Multilayered Film Capacitors for Advanced Power Electronics and Electric Motors for Electric Traction Drives

Deepak Langhe

PolymerPlus LLC 7700 Hub Pkwy, Valley View, OH-44125

June 7, 2017

Project ID # EDT081

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Date: October 1, 2015

End Date: September 29, 2017

Percent Complete: 75%

Budget

Total project funding: \$1750k

DOE share: \$1400k

Contractor share: \$350k

- Funding in FY 2016 \$ 735k
- Funding for FY 2017 \$ 600k
- Remaining: \$ 415k (as of 2/28)

Barriers

- Barriers addressed
 - Temperature performance: > 140 °C
 - Volume Reduction ~ 40%
 - Cost Reduction to \$30

Partners

- SBE for capacitor development
- ORNL for capacitor characterization, cost modeling
- CWRU for materials development

Relevance

Objective: To fabricate and scale up high temperature, high energy density, and low loss dielectric films for 500 µF to 1 mF capacitor manufacturing, using a multilayered co-extrusion processing.

State-of-the-art technology: • BOPP 1 mF DC-link Capacitor costs \$60/mF • Use temperature = 105°C • External cooling system Multilayered Film

New class of Materials:

- High Temperature Use,
- Increased energy density
- Compact size
- Reduced cost

PEEM program DC-link Capacitor Target

Capacitance (µF)	>1000
Voltage rating (VDC)	650-900
Tanδ at 10 kHz	< 0.02
ESR (mΩ)	< 2
ESL (nH)	≤ 5
Temperature (°C)	140
Ripple current (A rms)	100
Failure mode	benign
Lifetime (hrs)	>20,000
Volume (L)	≤ 0.6
Cost (/mF)	≤ \$30

Milestones

Milestones	Status	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Multilayer film processing and optimization production scale up									
Processing optimization	Year 1 - Complete								
Production scale-up	Year 1 - Complete Year 2- In-progress								
Multilayer film thickness reduction									
Film stretching	Year 1 – Complete								
• In-line processing (< 4 μm)	Year 2 - Complete								
New material development	In-progress								
Multilayer film metallization	In-progress								
Capacitor designing	Year 1 - Complete								
Capacitor fabrication and testing									
• 100 µF	Year 2 - Complete								
• 500 µF	Year 2 -In-progress								
Cost models	Year 2 - Complete								

Value Statement

Dielectric multilayered films (MLF) technology enables up to a reduction in capacitor volume by replacing BOPP or Mylar while extending usage temperatures to 150 °C.

These advances were enabled by leveraging:

- Synergistic combination of high dielectric constant and high breakdown strength/low loss polymers in parallel layered construction
- Changing polymeric material failure mode to increase layered film breakdown strength

Multilayer Film Properties

- Increased dielectric constant
- Increased temperature capability
- Improved Breakdown Strength
- Reduced Losses

Approach

Coextrude a high dielectric constant material with a high breakdown strength material to achieve improved dielectric properties in film and capacitor prototypes

Materials Research → Capacitor Prototypes → Commercial Marketplace

Approach – Film Development

Coextrude a high dielectric constant material with a high breakdown strength polymers

Polymer A

Advantage: High dielectric

constant

Disadvantage: High loss, high hysteresis, low breakdown strength, slow discharge time

Polymer B

Advantage: High breakdown strength, low loss, low hysteresis, fast discharge time

Disadvantage: Low dielectric

constant

Optimize energy density and minimize dielectric loss by varying the number of layers, composition, layer thickness, and materials

- Increased Dielectric Constant : > 4.0
- High Dielectric Strength: > 1000 MV/m
- Increased Energy Density: 10 16 J/cc at film level
- Increased Temperature: 150 °C

Background- Coextrusion Process

R&D Coextrusion Line

Pilot Coextrusion Line

Background- Coextrusion Process

Film Processing Optimization

layer/film thickness effect, layer thicknesses = 10s to 100s nm

Production Scale-up

12.5 μm 4000 ft

890±120 MV/m **Non-DOE**

 $1400 \pm 250 \text{ MV/m}$

- Thickness:12.5 to 3.5 μm
- Quantity:
 Several Rolls
 3000 -7000 ft./roll

Properties	Multilayer Film	Commercial BOPP
Layers	10s	1
Composition	X/Y	100
Thickness, µm	12-4	3-4
Dielectric	4.0	2.25
constant	(1 kHz)	
Breakdown	>1100	800
Strength (MV/m)		
Temperature, °C	150	< 105
Tan δ	0.005	0.0003

- Multilayered films developed in DOE program showed 1.8X higher dielectric constant and more than 30% higher breakdown strength than commercial BOPP film.
- Dielectric constant can be increased using higher content of Resin A (high dielectric constant).

Using $U_e = \frac{1}{2} \varepsilon_r \varepsilon_0 E_b^2$, a **3X increase in energy density** is estimated.

Film Properties and Capacitor Size Correlation

Commercial BOPP and PET films = 4 μ m, PolymerPlus Film Status = 3.5 μ m

With existing formulations at 3.5 µm film thickness, a 40% capacitor size reduction is possible.

Film Metallization

Objective: To metallize HT-MLF film rolls for capacitor fabrication trials

Progress:

- Two metallization trials of 3000 ft HT-MLF film completed.
- One metallization trial of 7000 ft of MLF film completed.
- Additional trials are scheduled with 8 µm film.

8 µm film thickness

8 µm film thickness

4.5 µm, Significant wrinkles

Metallization on existing BOPP metallization equipment demonstrated. Improved film quality critical for better capacitor winding.

Capacitor Designing and Fabrication

3D modeling

25 μF parts

- A baseline using metallized PP film into a industrially relevant inverter was studied as a benchmark study..
- Performed iterative thermal and thermomechanical FEA to support overall capacitor design
- Comparison of rolled BOPP and HT-MLF Capacitors

100 µF windings

Film Thickness: 8µm

- Several 25 μF and few 100 μF parts were fabricated in first year of the program.
- Low voltage stress and higher leakage currents were observed due to wrinkled metallized films.

Leakage Current

- High Breakdown strength
- Lower leakage current
- Improved clearing

Film Thickness: 12µm

Multilayer film modifications

Adding 3rd polymer to modify layer-layer interface

- Improvement in breakdown strength possible with addition of 3rd polymer.
- Modified layer-layer interface.

Reducing losses in high temperature MLFs

- Thermal annealing can reduce the impurity ions loss to some extent by regulating the crystalline structure of polymer A.
- Unipolar poling is an efficient way to drive impurity ions from polymer A into polymer B. Multilayer films are suitable for unipolar application such as DC-link capacitors in EVs.

Responses to Previous Year Reviewers' Comments

This project is a new start.

Collaboration and Coordination with Other Institutions

Partners/Collaborations

Industry

Project sub-contractor: Leads efforts to design, fabricate and test of capacitor prototypes ranging from 15-500 µF.

National Laboratory

Project sub-contractor: Leads efforts to designing, thermal and thermal-mechanical FEA analysis and cost modeling.

University

Project sub-contractor: Leads efforts understand material structure-properties, develop new materials

Remaining Challenges and Barriers

Improving film quality

2016

- Film thickness uniformity critical in winding large capacitor parts with improved performance.
- Internal equipment upgrade completed, through internal development, to address this issue.

Production scale-up

- Existing capability allows production of 25 lb. film rolls. Higher production will be required to fabricate several tens of parts.
- Increased production scale-up (several hundred lb.) of 12 μm film was achieved through manufacturing vendors.

Addressing Challenges: PolymerPlus Internal Development

- 40" Film Exit Die
- 42" film take-off station
- In-line Thickness Gauge

8 - 32" Wide film

10 – 150 fpm film collection speed Reduced wrinkles

Increased production up to 75-150 lb./shift possible

Proposed Future Work

- Multilayer film production scale-up trials : ~ 10,000 ft x 12" x 8 μm
- Investigate 4 µm film thickness production to reduce wrinkles.
- Film Metallization trial as per SBE design
- Capacitor fabrication : 25 µF to investigate effect of temperature
- Capacitor fabrication: 500 µF as deliverables
- Capacitor parts testing
- Continued work to develop approach to improve multilayer films annealing
- Continued thermal and thermomechanical FEA

Any proposed future work is subject to change based on funding levels.

Film Production • PolymerPlus • Vendor

- Demonstrated use of commercial polymers for capacitor applications
- Demonstrated improved dielectric film performance
- Requires film quality improvement for better capacitor windings
- Multilayer film "drop-in" products feasible.